MOLLIORIN-A: A UNIQUE SCALARIN-LIKE PYRROLOTERPENE FROM THE SPONGE CACOSPONGIA MOLLIOR

F. Cafieri, L. De Napoli, E. Fattorusso, *C. Santacroce and D. Sica Istituto di Chimica Organica dell'Università di Napoli Via Mezzocannone 16, Napoli, Italia

(Received 21 December 1976; received for publication 6 January 1977)

Scalarin (1)¹ and the related compounds deoxoscalarin², disidein³, scalaradial⁴, heteronemin⁵ and furoscalarol⁶, all present in marine sponges, represent a new class of sesterterpenes possessing a tetracarbocyclic skeleton.

We wish to report herein the structure determination of another scalarin-like terpene having a pyrrole ring, molliorin-a $\binom{2}{2}$, obtained from the extracts of the marine sponge Cacospongia mollior⁷.

Careful chromatography of the ether-soluble extract of the fresh sponge on silica-gel (eluent benzene/Et₂O 95:5) afforded 2 (in <u>ca</u>. 0.03% yield of the dry material), m.p. $102-105^{\circ}$; [a]_D 51.7° (c 1 in CHCl₃), M⁺/e 479.3769 (C₃₂H₄₉NO₂ requires 479.3763). i.r. (ν_{max} 1740 and 1240 cm⁻¹) and n.m.r. spectra in carbon tetrachloride (δ 1.90, 3H, s; 5.31, 1H, m) indicate the presence of a CH₃COOCH \leq group. This was confirmed by alkaline hydrolysis of 2 which afforded the alcohol 3, m.p. 165-167° (from EtOH); [a]_D -1.4° (c 1 in CHCl₃), M⁺/e 437, ν_{max} (CCl₄) 3500 cm⁻¹; δ (CCl₄) 4.04 (1H, bm, H-C₁₂).

The presence of a β,β -disubstituted pyrrole ring was deduced from the positive Ehrlich test, the n.m.r. spectrum of 3 (δ 6.32 and 6.21, singlets broadened by long range coupling, 1H each) and the solvent induced shift⁸ of these two signals ($\delta_{CC1_4} - \delta_{C_6D_6} = 0.06$ and 0.05 respectively). The u.v. spectrum (MeOH) of 3 shows a maximum at 257 nm ($\epsilon = 13700$) suggesting that the pyrrole ring is conjugated with a double bond.

Complementary data which evidenced the presence of the partial structure involving $C_{13} - C_{16}$ were obtained from the n.m.r. spectrum of 3, which showed in the olefinic region signals at δ 6.26 (1H, H-C₁₆) and 5.53 (1H, dd, J 9.5 and 3 Hz, H-C₁₅) [the signal at δ 6.26 is superimposed to the signals due to the two pyrrole protons (δ 6.32 and 6.21); however in the n.m.r. spectrum of 3 in C_6D_6 , this signal is better resolved resonating at δ 6.60 as a doublet of doublets (J 9.5 and 2 Hz). These assignments were confirmed by decoupling: irradiation at δ 6.26 simplified the signal at δ 5.53 to a doublet (J 2 Hz) and saturation of the proton signal at δ 2.42 (lH, broad, H-C₁₄) collapsed the signal at δ 5.53 to a doublet (J 9.5 Hz). Finally, the signal at δ 2.42 was converted into a doublet by irradiation at δ 6.26 or 5.53, the coupling constants being 2 and 3 Hz respectively. The coupling constant between H-C₁₅ and H-C₁₆ (J 9.5 Hz) is only consistent with a <u>cis</u> relationship and in addition suggested that the two olefinic carbon atoms lie in a six-membered ring.

Support for the presence of rings A, B and C came from the n.m.r. spectrum of 3, which shows in the higher field region five methyl singlets at δ (C_6D_6) 1.22, 1.08, 0.89, 0.87 and 0.84 (the higher field region in CCl₄ is ill-resolved), and the mass spectrum which exhibits intense ions at m/e 437 (98%, M⁺), 422 (100%, M⁺-Cl₃), 404 (43%, M⁺-H₂O - CH₃), 381 (10%, M⁺-C₄H₈), 363 (20%, M⁺-H₂O - C₄H₈), 202 (97%, a + H) and 191 (11%, b - H).

The results of the mass spectral analysis of 3 are worthy of further discussion. The presence of two intense ions at m/e 381.3035 ($C_{26}H_{39}NO$; $M^+ - C_4H_8$ and m/e 363.2921 ($C_{26}H_{37}N$; $M^+ - C_4H_8 - H_2O$), taking into account the characteristic fragmentation of N-alkylpyrroles⁹, can be rationalised by assuming that a C_5 unit is linked to the pyrrole nitrogen. This unit must be a 2-methylbutyl group as proved by the n.m.r. spectrum of 3 in C_6D_6 , which shows signals at δ 0.64 (3H, d, J 7 Hz, H_3-C_{30}) and 0.58 (3H, t, J 6 Hz, H_3-C_{29}).

Accumulated results led to the formula 2 as the most favourable for mollio rin-a. The final proof of correctness of this formula was provided by its synthesis: scalaradial (4) and dl-2-methylbutylamine, in the experimental conditions used for the synthesis of pyrrole derivatives, afforded a product which showed chromatographic properties (TLC on silica-gel in benzene/40-70⁰ light petroleum 3:2 and benzene; on aluminium oxide in $\text{Et}_2^{0/40-70^0}$ light petroleum 1:2) and mass spectrum identical of those of 2.

As far as the biogenesis of molliorin-a, it is not unreasonable to suppose that, also in vivo, 2 could derive from scalaradial after reaction with 2-me-thylbutylamine arising from isoleucine by loss of carbon dioxide.

Acknowledgement: we are grateful to CNR (Roma) for GRANT n. 74.00480.03 in support of this investigation.

REFERENCES AND NOTES

- E. Fattorusso, S. Magno, C. Santacroce and D. Sica, <u>Tetrahedron</u>, <u>28</u>, 5993 (1972).
- 2. G. Cimino, S. De Stefano and L. Minale, Experientia, 29, 934 (1973).
- G. Cimino, P. De Luca, S. De Stefano and L. Minale, <u>Tetrahedron</u>, <u>31</u>, 271 (1975).
- 4. G. Cimino, S. De Stefano and L. Minale, Experientia, 30, 846 (1974).
- R. Kazlauskas, P.T. Murphy, R.J. Quinn and R.J. Wells, <u>Tetrahedron Letters</u>, 30, 2631 (1976).
- F. Cafieri, L. De Napoli, E. Fattorusso, C. Santacroce and D. Sica, <u>Gazz.</u> <u>Chim. It.</u>, in press.
- 7. It is to be noted that we examined a sample of <u>Cacospongia mollior</u> (identified by Prof. M. Sarà, Università di Genova) collected in the bay of Taranto (May 1975). This sample, differently from that previously examined by Cimino <u>et al.</u>⁴, does not contain appreciable amounts of scalaradial.
- 8. J. Ronayne and D.H. Williams, J. Chem. Soc. B 805 (1967).
- A.M. Duffield, R. Beugelmans, H. Budzikiewicz, D.A. Lightner, D.H. Williams and C. Djerassi, J. Am. Chem. Soc., 87, 805 (1965).